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Abstract   This paper presents the design, architecture, implementation, and experimental results from a networked 

mobile sensor test-bed developed for collaborative sensor tracking applications. The test-bed comprises a fleet of 

networked mobile sensors, an indoor localization system, a control, debugging and management infrastructure, and 

a tiered wireless ad hoc network for seamless integration of the above three components and the existing wireless 

infrastructure. First, the software and hardware architectural details of a Swarm Capable Autonomous Vehicle 

(SCAV) system for our collaborative applications are presented. Second, the details of an indoor self-localization 

and Kalman filter based navigation system design for the SCAV platform are presented. Third, as an example multi-

sensor application, a collaborative multi-target tracking problem and a heuristics-based networked solution are 

formulated. Finally, the performance of the collaborative tracking framework is evaluated on the laboratory test-bed 

for characterizing the impacts of localization and navigation errors on the distributed tracking performance.  The 

experimental study also characterizes the tradeoff between the tracking performance and the consumed wireless 

bandwidth. The experimental results demonstrate a number of counterintuitive results due to various errors in sensor 

localization and navigation.  .  

Keywords – Mobile Sensors, Sensor Network, Collaborative Applications, Agent Swarming, Multi-target Tracking, 
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1. Introduction 

   Collaborative mobile sensing is gaining increasing popularity as an enabling technology for a wide 

range of sensing applications including environmental monitoring, security surveillance, and target 

tracking. Target tracking is a prevalent military requirement for surveillance and reconnaissance scenarios 
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including those in urban battlefields and inside large buildings and public places such as airports and train 

stations. In recent years, the technology of unmanned sensing and tracking [1] has experienced a 

noticeable shift from using few expensive and feature-rich autonomous sensors, to deploying swarming 

fleets of large number of relatively inexpensive and smaller autonomous sensors that are wirelessly 

networked. The advantages of the latter approach are as follows. First, a networked fleet provides a more 

robust solution in which the loss of few inexpensive sensors does not significantly degrade the overall 

sensing and tracking capabilities. Second, as outlined in [2] and [3], collaborative tracking can be 

designed to be more efficient than single-sensor tracking, especially in the presence of multiple mobile 

targets.  

   The need for such swarming approach to enable collaborative sensing can be further motivated by 

observing how a large number of organisms in the nature use swarm dynamics for chasing and evading 

prays and predators. Schooling fishes, for example, swarm away from a predator using group 

coordination that relies on simple localized communication. A pack of cheetah uses group coordination to 

collaboratively track and tackle a prey. Similarly, a swarm of bees uses collaborative mechanisms to 

localize, track, and chase intruders using group swarming. 

   Successful deployment of a collaborative mobile sensor system to cater to such applications will require 

the following critical system components. First, a sensor platform with robust sensing, mobility, and 

networking capabilities needs to be developed. Second, self-localization abilities will be needed for target 

tracking. Third, smooth sensor navigation mechanisms will have to be developed in the presence of 

localization errors and inaccuracies at high platform speeds. Fourth, self-healing mobile ad hoc wireless 

network protocols will be needed for inter-sensor data dissemination.  Finally, multi-sensor collaborative 

applications will have to be developed by leveraging the underlying localization, navigation, networking 

and sensing services. Each of these four areas has seen recent research activities [4-11] and progress 

towards application-driven system integration. This paper contributes towards these integration trends by 

developing a system that comprises all four subsystems as well as their functional integration in the 

context of a collaborative multi-target tracking application in indoor settings. 

   The contributions of the paper are as follows. First, our experience on design and development of the 

above four subsystems are reported in the context of a laboratory prototype system. Second, a distributed 

multi-target tracking framework using the above subsystems have been developed and extensively 
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characterized in the presence of various measurement errors. Third, specific algorithmic insights are 

provided as to how adapting tracking can be implemented to cope with non-ideal localization and 

networking conditions. It is demonstrated that such non-ideal conditions can cause theoretically sound 

tracking algorithms to generate unexpected results, and therefore special experimental considerations will 

be necessary while implementing such mobile sensor systems under non-ideal conditions.  

   The rest of the paper is organized as follows. Section 2 describes the related work on collaborative 

multi-target tracking applications. The system architecture is presented in Section 3. The hardware and 

software system components of the mobile sensor platform are presented in Section 4. Section 5 details an 

indoor localization framework used by the mobile sensors for self localization, and a filtered navigation 

framework is presented in Section 6. Design of a collaborative tracking algorithm and its implementation 

and performance using the proposed test-bed are presented in Section 7. Finally, the paper is concluded in 

Section 8 with a summary and a list of ongoing work on this topic. 

2. Related Work  

   Indoor sensor localization [20, 23] for moving devices can be performed in an active or in a passive 

mode. In the active approach, each mobile device has an active transmitter, which periodically broadcasts 

beacons to a number of external fixed units. The estimated distance of the mobile device from each such 

fixed unit is fed back wirelessly to the mobile device, which then computes its own coordinate using the 

locations of the fixed units and individual distances. In the passive approach, it is the external fixed units 

that broadcast the beacons and the mobile device computes its own coordinate based on the estimates of 

the individual distances. The impacts of the density and number of external units have been analyzed in 

[22].  

   In this paper we use the passive approach with a Kalman Filter [14] based estimation for compensating 

the localization errors caused due to moving sensors. This approach is similar to what has been taken in 

[23] (to our knowledge, that is the only other published indoor localization and sensor navigation work) 

except that, unlike in [23] which uses an Extended Kalman Filter (EKF), we have used a regular Kalman 

Filter with an assumption of linearity for the sensor dynamics. Experimentally it is demonstrated that the 

linear KF with PVA (position, velocity, acceleration) state abstraction was sufficient for accurate 
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estimations in the presence of localization errors.  

   Target tracking using sensor networks has been extensively explored [23, 25, 26, 27, 30] in the recent 

literature. Both single- [29, 30] and multi-target [25, 28, 31, 32] tracking applications were investigated. 

The mechanism in [25] explores sensor network based multi-target tracking solutions and their 

performance in the presence of non-ideal conditions due to packet loss, communication delay variation, 

and false positive sensor detection. These and the algorithms presented in [28, 31, 32] are designed for 

systems operating in outdoor fields that are larger than the vehicle dimensions by several orders of 

magnitude. The field dimensions are also few order of magnitudes larger compared to the GPS based 

location estimation errors, which could be up to few meters [26]. In contrast, in this paper we investigate 

the impacts of location and navigation errors on multi-target tracking performance in a very tight indoor 

environment (i.e. an area of few square meters) that is not as large compared to the vehicle dimensions 

(i.e. approximately 15cm for the mobile sensor used in our test-bed) and the indoor localization errors, 

which have an upper bound of 10cm. Such tighter field dimensions (e.g. an area of 3m x 3m has been 

used for our experimentations) give rise to unique target tracking issues which are dealt with in this paper. 

3. Mobile Sensor Test-bed and Developed Services  

   The developed mobile sensor test-bed and its integration with the existing wireless network 

infrastructure are shown in Figure 1. The test-bed contains the following main components: 1) a fleet of 

indoor mobile sensors, 2) an indoor localization system for enabling sensor self-localization in GPS-

denied environments, 3) a control, debugging and management infrastructure, and 4) a tiered wireless ad 

hoc network for seamless integration of the above three components and the existing research 

infrastructure in various wireless network laboratories in Michigan State University. As for the networked 

mobile sensors, we have developed a Swarm Capable Autonomous Vehicle (SCAV) platform as described 

in Section 4.  
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Fig. 1: Components of the mobile sensor testbed and their integration  

   Developed mobile sensor services and their dependencies are depicted in Figure 2. The SCAV mobile 

sensor system comprises the following four services: a) wheel or track based locomotion, b) multimodal 

onboard sensing, c) both ad hoc and access point oriented wireless networking, and d) infrastructure 

assisted indoor localization using Radio Frequency (RF) and Ultra Sound (US) signals.   

   Self localization for the mobile sensor nodes within an in-building coordinate system have been 

achieved using a Time Difference of Arrival (TDOA) based ranging technique [12], coupled with 

collaborative multi-lateration [13]. A passive localization scheme has been adopted so that a SCAV can 

self-localize by using the received RF and US signals from preinstalled localization infrastructure.   

   A point-to-point navigation service is developed using the localization and the SCAV locomotion 

services. A framework of Bayesian filtering has been incorporated to tackle the intrinsic localization 

errors contributed by noises such as ambient RF and US interference, vehicle vibration, and inaccuracies 

introduced by the localization hardware components. Additional inaccuracies are caused when the 

localization intervals are too large to capture accurate locations of the moving sensors. A Position-
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Velocity-Acceleration (PVA) linear Kalman Filter [14] has been used for smooth navigation in the 

presence of those localization errors.   
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Fig. 2: System components of the collaborative tracking using SCAVs
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   Finally, a set of collaborative sensor applications have been developed using the ad hoc networking and 

sensing services from the SCAV architecture, and the smooth navigation service is implemented using the 

Kalman filter. As a representative application, a distributed multi-target tracking system and its variations 

involving different numbers of tracked and tracking sensors have been presented in this paper. 

Throughout the rest of the paper, these mobile sensor services components will be further elaborated.      

4. Swarm Capable Autonomous Vehicle (SCAV) Architecture 

   The picture of a mobile SCAV sensor unit is shown in Figure 3.  The middle picture shows the front-

view of a fleet of four mobile sensors, and the left-most picture shows the back-view of a single sensor 

without its collision bumper. The following features are currently available [15] in our mobile SCAV 

fleet. 1) Self-localization with centimeter level resolution, 2) Bayesian filter based point-to-point 

navigation, 3) Multi-modal onboard sensing, 4) Navigational collision avoidance using infra-red 

obstruction sensing, 5) Both Ad Hoc and infrastructure based radio communication using 900 MHz RF, 

and 6) Control, Debugging and Management System (CDMS).  
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   The CDMS software system is designed for managing the SCAV infrastructure locally or through a 

network as shown in Figure 1. The CDMS system runs on a Windows system and supports the following 

essential operations for the SCAV test-bed: 1) compiled image and software download using wireless 

links, 2) SCAV system debugging by allowing remote print console, 3) command line and graphical 

interfaces for remote command dispatch to targeted mobile sensors, 4) supporting a variety of sensor and 

mobile ad hoc network protocols for seamless connectivity with the SCAV test-bed and the backbone 

mesh network, 5) real-time location tracking for individual sensors and their experimental post-

processing,  6) command driven SCAV navigation, 7) sensor specific mobility planning through a 

graphical user interface, and 8) data upload and telemetry from the SCAVs using wireless links. Real-time 

location tracking screenshot from an example 2-SCAV leader-following experiment is shown in Figure 3.  
 

Physical appearance (6”x6”x4”) Swarm of four sensors
Fig. 3: SCAV mobile sensor platform and the Command Debug & Management System (CDMS) 

CDMS Screenshot

 

     The internal subsystem level hardware and software components of the SCAV architecture are shown 

in Figs. 4. A SCAV system contains the following subsystem modules. 1) An Atmel ATmega 

Localization, Navigation and Tracking (LNT) processor that forms the central processing platform, 2) A 

Hitachi H 8/3292 based locomotion controller, 3) An Ultrasonic/RF localization card (CRICKET [16], 

from Crossbow Technologies  [17]), 4) A sensor card containing onboard sensors including acceleration, 

temperature, magnetic field, light, and sound, and 5) An infrared proximity sensor for navigational 

collision avoidance, and 6) A 900MHz radio interface for network implementation. 

   Packet routing protocols are implemented over this 900MHz radio interface for ad hoc network 

operations among the SCAV units, the wireless backbone, and the CDMS modules as shown in Figure 4. 

The raw data-rate of each link is approximately 20Kbps, and CSMA and AODV are the MAC and the 

routing protocols that run on these interfaces. Both point-to-point and all-to-all packet communications 
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are supported using AODV and flooding respectively. No link layer protocol is used for hop-level error 

recovery, and it is left up to the application layer (e.g. the multi-target tracking as presented in Section 7) 

to deal with packet losses.       

   As for software, the Hitachi locomotion controller runs an embedded micro-kernel BrickOS [18], a 

public domain operating system, used for implementing SCAV’s locomotion control using geared motors 

and navigational touch and infrared sensors. A series of motor control and debugging APIs have been 

implemented between the LNT processor and the locomotion processor using a custom built serial 

interface. The SCAV mobile sensors are capable of moving with a maximum speed of 10cm per second.  

   Self-localization in a SCAV is performed within the LNT processor by computing coordinates using the 

sensor unit’s distance from a number of pre-installed localization beacons in known locations. This 

distance information is supplied by the CRICKET RF/US location sensor cards [16]. Note that the 

beacons are asynchronously broadcast by four independent CRICKETS at an interval of 0.8 seconds. No 

clock synchronization was necessary between the ceiling-mounted CRICKET units. In LNT processor, 

the embedded micro-kernel TinyOS [19] is run for supporting coordinate computation, Kalman Filter 

based navigation and collaborative tracking services as shown in Figure 2.  

   The LNT processor is also used for implementing a number of remote commands to and from a 

Command, Debug and Management System (CDMS) as shown in Figure 4. The CDMS is implemented 

using a 900MHz RF interface and an Atmel ATmega processor, which is connected to a Windows PC 

console over RS-232 serial interface. Using this arrangement, commands can be sent to specific SCAVs 

from a user interface in the Windows PC. Similarly, measurement and system performance parameters 

from specific SCAVs can be uploaded through the CDMS using the same Windows based user interface. 
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Fig. 4: System components and software modules in SCAV platform  

   The primary remote commands invoked from the CDMS to SCAVs’ LNT processors are: 1) SCAN:  for 

scanning the location of specific or all SCAVs present in the experimental field, 2) CHECK_BATT: for 

checking the remaining battery on specific SCAVs, 3) GO: for sending a SCAV from its current location 

to a new destination with a specified speed, and 4) STOP: to force a SCAV to stop navigation. And the 

primary remote commands invoked from a SCAV’s LNT processor to CDMS are: 5) RPRINT: for remote 

printing from a SCAV to the console PC’s screen, and 6) PERF_UPLOAD: used for remote upload of 

collected performance data from SCAV sensors to the remote PC’s hard drive. We have constructed a 

test-bed of three identical CDMS units and five SCAV units which are deployed in a 3m x 3m 

experimental field for conducting experiments involving localization, navigation and networked multi-

target tracking. Multiple CDMS units are used for printing debugging information from different SCAVs 

to different CDMS screens.        
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5. Mobile Sensor Self Localization  

   The components of the localization system are depicted in Figure 5. When a self-localization is needed, 

a SCAV computes its absolute distances from a number of static localization beacons pre-installed at 

known coordinates. Distance from a beacon is computed by measuring the time difference of arrival 

(TDOA) between an ultrasonic and a 433MHz RF signal simultaneously transmitted by the beacon. Once 

distances to a sufficiently large number of location beacons are computed, the SCAV computes its own 

coordinates using the distance values and the known coordinates of the relevant beacons. The MIT 

CRICKET localization hardware [16] has been used as the static beacons shown in Figure 5, and the 

localization sensor in the SCAV, as shown in Figure 4.  
 

Fig. 5: In-laboratory SCAV localization system

Fixed Location Beacons on 
Laboratory Ceiling

d1 d2

d3
d4RF/US Tx

(400 MHz RF)

CDMSCDMS

Debug Link
Mobile Ad Hoc 
Network (900 

MHz RF)

 

5.1 Distance Estimation   

      The following method is used for distance computation. If VRF and VUS are the known speed of RF and 

ultrasonic signals through air (VRF >> VUS), and T represents the time difference of arrival at the SCAV, 

then the distance between the SCAV and the beacon can be written as [20]:  

)11( USRF VVTd −= .  

   If the distance to the ith location beacon, installed at coordinate (xi, yi, zi) is computed as di, then the 
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measurement error iε  can be written as: iiiii dzzyyxx −−+−+−= 222 )()()(ε , where (x, y, z) is the actual 

location of the SCAV. With distance measurement from N beacons, the localization problem becomes 

equivalent to estimating the actual coordinate (x, y, z), so that the cumulative squared error quantity  ∑
=

N

i
i

1

2ε  

is minimized. This constrained optimization problem is known as Minimum Mean Square Estimate 

(MSME) [21] in the literature.  

5.2 Onboard Coordinate Computation at Real-time   

   The simplest way to solve this system of N 2nd order equations Nidzzyyxx iiii ,...,2,1;)()()( 2222 ==−+−+−  

is to convert it to N-1 linear equations by pair-wise subtractions. For example, the quadratic equations for 

i = i and 1 can be combined 3  into the linear equation 

)()()()(2)(2 2
1

22
1

222
111 yyxxddyyyxxx iiiii −+−+−=−+−  for Ni ,...,2= . This provides a linear system of 

equations: 

 

 

 

   If this (N-1)th order system is represented as VUA =× , then the solution for MMSE can be computed by 

the following matrix operation: [ ] VAAAU TT ××= −1).(  , as long as 3≥N and the matrix A is non-singular.  

   We have implemented this MSME based self-localization mechanism on the onboard LNT processor as 

shown in Figure 4. A 3m x 3m SCAV navigation test-bed has been created within a laboratory, at the 

ceiling of which four static beacons have been installed. The beacons have been positioned within a 0.5m 

x 0.5m area right above the center region of the 3m x 3m test-bed.  

                                                 
3 If all location beacons are placed at the same height, the z-coordinate cancels out from the equations.   
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Fig. 6: Performance of sensor self-localization  

   Performance of SCAV localization is presented in Figure 6, which shows the absolute error represented 

as the difference between a SCAV’s actual coordinate and its location estimated by the localization 

mechanism described above. The primary source of this error is from faulty distance computation caused 

by the inaccuracies of the CRICKET hardware used as the beacons as well as listeners within the SCAV 

units. Other sources of errors were identified as various ambient RF and US interferences, and high 

frequency mechanical vibration contributed by the SCAV motors. 

   The measurements were taken by statically positioning a SCAV at different locations in the test-bed as 

shown in Figure 5. For each location, 50 different location computations were used to report an average 

error. From Figure 6, observe that the maximum localization error is about 7cm, which is only about 1.7% 

of the diagonal of the entire test-bed area. Comparing with the localization errors reported in [21] and 

[22], we consider the implemented indoor location service to be sufficiently accurate for effective 

navigation and target tracking. Also it can be observed that the errors are generally larger away from the 

center of the test-bed. This is because the beacons are placed in an area right above the center region, and 

as the SCAV is moved away from this region the beacon distances increase. The distance computation 

errors were found to be positively correlated with the distance itself [20].  This explains higher errors near 

the periphery of the navigation test-bed. Also, the location estimation performance was found to be 
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unbiased.      

6. Filtered Sensor Navigation  

   The most primitive component of the point-to-point SCAV navigation service is to be able to navigate a 

mobile sensor from its current location to a new destination location in the minimum possible time. This 

function has been implemented as a remote command to the SCAVs LNT processor. Any remote entity 

such as the CDMS or another SCAV can issue this command to initiate navigation for a SCAV to a 

specific destination. A SCAV can also self-invoke the command locally. In both cases, once the command 

is sent to its LNT processor, a SCAV is required to autonomously navigate to the specified destination.  

   The navigation latency depends on the accuracy of the underlying localization service as described in 

Section 4. Although the localization errors in the cases of static SCAV placements, as reported in Figure 

6, are very small, the error numbers were found to be significantly larger with moving sensors. While 

ultrasound interferences due to mechanical vibration and motor noises partially responsible for this 

inaccuracy, the primary reason for such high errors is as follows. Due to the asynchronous nature of the 

RF and US transmissions from multiple localization beacons (four in our installation), the simultaneity 

condition of distance measurement does not hold [23]. In other words, the distances computed to different 

localization beacons correspond to different SCAV locations, whereas the MSME mechanism for 

coordinate computation implicitly assumes that all di values are measured from the same SCAV location. 

This contributes to heavy coordinate errors that can translate into slow point-to-point navigation due to 

frequent erroneous heading changes.     

6.1 Error Reduction using Kalman Filter  

   Since the locomotion dynamics of a SCAV can be deterministically modeled, and is known a priori, it is 

possible to design a Bayesian filter [24] that can partially compensate for the localization errors by 

predicting the sensor’s location at successive localization instances according to its underlying 

locomotion dynamics. The prediction value can then be incrementally corrected using the location 

computed by the SCAV’s LNT processor. Considering the linearity of SCAV’s movement dynamics, we 

implement a linear Kalman Filter [14], which implements a special case of the Bayesian filter by 

assuming that the system and measurement noises are strictly Gaussian. Note than unlike in the indoor 
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filtered navigation approach in [23], which uses an Extended Kalman Filter (EKF), we use a regular 

Kalman Filter with the assumption of linearity for the SCAV’s movement dynamics.  

   Although an EKF can provide better filtering performance for a wheeled non-holonomic system such as 

the SCAV, the processing requirement for EKF can be prohibitive for Atmel Atmega 128L (4 MHz) 

which is used as SCAV’s LNT processor platform. This processing constraint is particularly relevant 

when considering the other system operations such as network protocol processing, sensor navigation, 

and multi-target tracking as described in later parts of the paper. Considering this resource constraint, 

which is typical for an embedded sensing platform such as the SCAV, we have chosen a linear Kalman 

Filter instead of an Extended Kalman Filter for reducing the localization errors.   

   We use two linear one dimensional PVA (position, velocity, acceleration) Kalman Filters (KFs), one for 

the x dimension with state vectors [ ]Txxx &&& , and the other for y dimension with state vector [ ]Tyyy &&& . 

These two filters work identically, but independently, and here we present the Kalman equations only for 

the x dimension. Exact same equations apply for the y dimension as well. We have explored both the 

second order (PV) and the third order (PVA) filters, and based on the experimental accuracies, the third 

order implementation is chosen. Careful investigations revealed that frequent stop-and-go, and direction 

changes, and the subsequent changes of SCAV velocity could not be accommodated well by a PV filter in 

the 3m x 3m experimental environment. A third order filter provided better error estimations. Also, we 

have tried two approaches, one with coupled x and y states, and the other with decoupled states as 

specified above. Experimentally we found that the estimation accuracies from both the models were 

pretty comparable. The decoupled approach was adopted for its relative computational lightness.   

   Assuming a constant x&& , and ignoring x&&& and higher order derivatives, the discrete state equations for 

SCAV locomotion at the kth iteration can be written as: 
x
kkkkk wtxtxxx 1

2
12

1
11 −−−− +Δ⋅⋅+Δ⋅+= &&&  

x
kkkk wtxxx &&&&& 111 −−− +Δ⋅+=  

x
kkk wxx &&&&&& 11 −− += , 

where tΔ is the discrete time step, and w represents the system noise. Assuming time invariant system 

noise, the above system of equation can be written more concisely in vector format as: 

     WSAS kk +×= −1                                                                  (1) 

The measured value of the x through localization at the kth step can be written as: x
kk

m
k vxx += , where v 

is the measurement error and xk is the actual value of x. Assuming time invariant measurement error, it 
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can be written as: 

      VSHZ kk +×= .                         (2) 

The constant matrices A and H in Equations 1 and 2 are:  

 

and [ ]001 . Considering this system and measurement formulation, the Kalman 

prediction equations can be organized as:  

   )(
1

)( +
−

− ×= kk SAS  and QAPAP T
kk +××= +
−

− )(
1

)( ,                                               (3) 

where (-) indicates a prediction and (+) indicates a Kalman correction. The matrix Pk represents the system 

state covariance, and Q represents the covariance matrix of the system noise parameters. The Kalman 

correction equations are: 
1)()( )( −−− +⋅⋅⋅⋅= RHPHHPK T

k
T

kk  

)( )()()( −−+ ⋅−⋅+= kkkkk SHZKSS  
)()()( −−+ ⋅⋅−= kkkk PHKPP                            (4) 

The matrix Kk is the Kalman gain, and R represents the covariance matrix of the measurement error 

parameters. The LNT processor in SCAV iteratively solves the system of Equations 3 and 4 with tΔ set to 

be 500ms. The covariance matrices Q and R were experimentally tuned at diagonal element values of 

0.000005 and 0.1 respectively for the best filter performance.  

   An outlier rejection mechanism was also embedded within the filter so that whenever a measured 

coordinate in kZ is found to be too far from the last predicated value in )(−
kS , the Kalman gain is forcibly 

reduced to deemphasize this new measurement, and thus reducing the effects of overly erroneous location 

measurements. When the absolute difference between kZ and )(−
kS is found to be more than 50% of the 

estimated value )(−
kS , the measured kZ is considered to be an outlier. The implemented gain reduction was 

90%, which is experimentally optimized. In other words, the Kalman gain is reduced to one tenth of the 

original gain in the events of outliers.  

 

6.2 Sensor Navigation   

   Both the filters for the x and y dimensions are clocked synchronously at 500ms intervals and the 

corrected x and y coordinates from )(+
kS are used for navigating a SCAV. In case of a missed beacon, the 
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most recently received beacon is used for filter processing at the clocking time points. Such beacon losses 

were found to be present and they do contribute to the overall navigation error reported in Section 6.3. 

Figure 7 depicts an integrated localization and filtered navigation approach that is implemented in the 

LNT processor for point-to-point SCAV navigation. Note that after the Kalman correction step is 

performed, the desired sensor heading is computed by using the corrected coordinates )(+
kS and )(

1
+
−kS  from 

the current and the previous steps. At this stage, the SCAV makes slow turns if it determines that a 

heading change is necessary to realign its movement towards the current destination.  
   A constant speed differential between the left motor and the right motor is used for implementing the 

turns. When a turn needs to be executed, the Atmega LNT processor instructs the Hitachi locomotion 

controller about the speeds of the individual motors and the duration for which the speed differential 

should be maintained. These three parameters together determine the amount and the speed of the turn. 

This integrated localization, filtering, and navigation decisions run continuously till the SCAV reaches its 

destination specified in the GO command. 

 
 

Keep Moving for     time    tΔ)(−
kSKalman Prediction (      ))(−
kSKalman Prediction (      )

Reached 
Destination?

Reached 
Destination?

GO Command Received 
by the LNT Processor

yes Stop 
Navigation

Stop 
Navigation

no

MSME based Coordinate 
Measurement (     )kZ

MSME based Coordinate 
Measurement (     )kZ

)(−
kSABS(        - ) >

Outlier Threshold? 
kZ)(−

kSABS(        - ) >
Outlier Threshold? 

kZ no

Outlier Detected

yes

Kalman
Correction (      ))(+

kS
Kalman

Correction (      ))(+
kS

Outlier rejection: Force 
a Low Kalman Gain

Outlier rejection: Force 
a Low Kalman Gain

Compute Heading 
using        and  )(+

kS )(
1

+
−kS

Compute Heading 
using        and  )(+

kS )(
1

+
−kS

)(+
kS

Turn to Change Heading 
based on        , current 

heading, and destination    
)(+

kS
Turn to Change Heading 
based on        , current 

heading, and destination    

Fig. 7: Integrated localization and navigation algorithm  
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   It is possible to implement the Kalman process and the navigation process as two asynchronous 

execution threads, so that the filter produces corrected coordinates driven by a separate clock, and the 

navigation and other possible application threads can access to those coordinates asynchronously. That 

way, the clock frequencies of those processes can be set independently. 

   We have also experimented with navigation implemented in a stop-and-go manner so that between the 

moves, a SCAV waits for some time to compute coordinates using static localization. Since the static 

localization produces more accurate coordinates, the stop-and-go policy is able to offer more accurate 

navigation than the continuous mode of operation presented in Figure 7. Due to the stops however, the 

stop-and-go was observed to be consistently slower than the continuous mode.  

    Note that the integrated navigation mechanism in Figure 7 implicitly uses certainty equivalence 

principle to separate navigation from location estimation in that the navigation module assumes the 

SCAV is at the mean position estimate.  These mean position values, in turn, are used for periodic 

heading correction during navigation. 

6.3 Experimental Sensor Navigation Performance    

   Performance of the SCAV navigation system is reported in Figures 8 and 9. Figure 8:a shows an 

experimental scenario in which first a GO command was sent to a SCAV to move it from location 

(350,350) to (150,150), and then another GO was given from (150,150) to (150,350). Note that the 300cm 

x 300cm area in the graph represents the SCAV test-bed used for the following experiments. After the 

navigation was completed, the PERF_UPLOA command was remotely invoked from the CDMS (see 

Figures 1-4) for wirelessly uploading the performance numbers to a PC for data post processing. 
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Fig. 8: Navigation performance: a) absolute locations, and b) distance between successive navigation points 
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   The points in Figure 8:a represents the measured coordinates from the vector kZ and the Kalman 

corrected coordinates from )(+
kS . These points clearly demonstrate how the presented filter is able to 

smooth out the navigation of a SCAV in the presence of measurement errors. The effects are further 

quantified in Figure 8:b, in which the distances between successive measured locations ),( 1−kk ZZ and the 

filtered locations ),( )(
1

)( +
−

+
kk SS are plotted with time. The average of that distance for the measured locations 

is approximately 10cm, although the individual measurement goes as high as 40cm. In the ideal case, the 

average should be around 4.5cm, which is the distance traveled in 500ms )( tΔ  at a SCAV speed of 

9cm/sec used in these experiments. Although there are some high values, the filtered distances average to 

a pretty close value of 4.7cm. This further confirms the effectiveness of the filter. Note the spike that 

corresponds to the change of destination caused by the second GO command. Also observe as to how the 

measurement errors are significantly larger compared to the static localization errors presented in Figure 

6. This difference can also explain why a stop-and-go navigation, that uses static localization, can deliver 

more accurate navigation compared to its continuous counterpart used in the experiments here. 
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Fig. 9: Navigation performance: a) heading changes, and b) heading error distribution 
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   The filter’s effectiveness in alleviating navigation inaccuracies in terms of sensor heading are presented 

in Figure 9. In Figure 9:a, the absolute difference between the computed headings in successive 

navigation instances are plotted with time. The measured values correspond to heading computed 

using kZ , and the filtered values correspond to heading computed using )(+
kS . In ideal situation, the 

heading should remain constant at an angle of 45o for the first leg, and 90o for the second leg of the 

navigation segments shown in Figure 8:a. The differences in heading, therefore, should remain zero 

except at the point of destination change at the end of the first leg. The results indicate significantly 

higher errors and variation in the measured heading changes compared to those computed through 

filtering.  

   To quantify these errors further we plot the distributions of the absolute heading errors (difference from 

45o and 90o in the first and the second legs) in Figure 9:b. Observe how the filtered errors are clustered 

mostly within an error of 30o, whereas the raw measurement errors are spread over a much wider range. 
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These results validate our integrated system in terms of: a) the SCAV platform architecture including its 

hardware and software components, b) the CDMS based debugging infrastructure, c) indoor self 

localization system, d) dynamic navigation with a Kalman filter model, and e) integrated operation of all 

the above subsystems. As shown in Figure 2, all these developed services are leveraged by the 

collaborative sensor applications including the multi-target tracking framework as presented in the next 

section.  

7. Collaborative Multi-target Tracking     

    The tracking problem is formulated as follows. There are M-number of Mobile Target Agents (MTAs) 

plying in a reconnaissance area, and the goal is to efficiently track and follow the MTAs using A-number 

of Autonomous Reconnaissance Vehicles (ARVs). The ARVs are able to sense MTAs and navigate 

collaboratively for maximizing their tracking coverage. The problem is to develop distributed algorithms 

for such collaborative tracking.   

   Successful tracking for an MTA is defined by the situation when at least one ARV follows the MTA 

while being within a pre-defined range, termed as the Tracking Range. For a sufficiently large time 

horizon, if Di represents the cumulative tracking duration for MTAi, then the overall tracking performance 

for the entire tracking system can be represented by a Cumulative Tracking Index (CTI), defined as 

∑ =

M

i iD
1

, where M is the total number of MTAs in the system. While maximizing the CTI will ensure the 

best utilization of the ARV fleet, keeping the Coefficient of Variation (COV) of Di (i=1,2,…M) will 

ensure that certain MTAs will not remain untracked while the others are aggressively tracked. The COV 

is computed as the ratio of standard deviation of the Di values and their average. The objective of the 

tracking algorithms will be to maximize CTI, while keeping the COV small.  

7.1 Networked Tracking Algorithm    

   We propose the following heuristic based collaborative tracking algorithm. The key concept of the 

algorithm is that the ARVs wirelessly share their individual tracking performance, and individual ARVs 

switch to different MTAs when that is deemed appropriate for meeting the CTI and COV objectives stated 

above. A pseudo-code for different components of the algorithm is presented in Figure 10.   
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 /* Collaborative Tracking Algorithm executed by ARVj */ 
 

Sensing:  
ARVj periodically senses to check if it is within the tracking 
range of any MTA 
 

Stored Information:  
A D-table with the currently stored Di values for all MTAi 
(i=1,2,…M); all Di values are initialized to be zero; 
 

Information Exchange:  
ARVj Periodically sends its D-table to the rest of the ARVs 
through an inter ARV ad hoc network 
 
 

Tracking:  
 

While (for ever) { 
    IF (not locked with any target MTA) { 
        Remain stationary and wait till an MTA is sensed; 
        // MTAk is sensed by the ARVj  
        ARVj locks to MTAk and starts tracking it 
       Dk in ARVj‘s table is incremented by one after  
       each constant duration of tracking by ARVj   
    } ELSE {  
        // ARVj is currently locked to an MTAr 
        // Dr in ARVj‘s table is incremented by one after  
        // each constant duration of tracking by ARVj   
        IF (an MTAk is sensed by the ARVj) { 
            // ARVj may need to switch from MTAr toMTAk    
            Compute D̂ , the average Di over all available MTA   
            entries in the local D-table 
            IF ((Dr > D̂ ) && (Dr > Dk + Switch_Threshold)) { 
                ARVj switches to MTAk and starts tracking it   
            } 
        } 
     } 
}  
 

D-Table Update:  
When RAVj receives a D-table from another RAV, it merges 
the received table with its existing table so that: 1) new 
MTA entries are created as needed, and 2) for MTA entries, 
existing in both the tables, update the Dr field by the 
maximum of the two. 
 

Fig. 10: Pseudo code for tracking algorithm 

 
   The tracking algorithm is decoupled from the D-table dissemination model, and can work with a variety 

of mechanisms such as controlled flooding, dynamic spanning trees, and similar network protocols. Also 

note that as long as an ARV remains locked to an MTA, the appropriate Di value is updated within the 

local D-table of the ARV. The Di value in ARVj’s table is increased by one after each constant duration of 
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tracking of MTAi by ARVj. Since the D-table merger (see Fig. 10) always use the maximum network wide 

available value of Di, this quantity represents the cumulative tracking time of MTAi by all the ARVs in the 

network. 

   According to the presented algorithm, when there are more (or equal) ARVs than MTAs, the algorithm 

reaches a steady state when at least one ARV gets locked to an MTA. No further target switching is 

necessary in these scenarios. Even when the MTAs outnumber the ARVs, the Cumulative Tracking Index 

(CTI) can be maximized just by ensuring that each ARV gets locked to a different MTA. This however 

does not minimize the Coefficient of Variation of CTI, since it is then possible that few MTAs may 

remain untracked for the entire time horizon. To avoid this, the concept of switching has been introduced 

in the algorithm. An ARV, which is currently tracking MTAr, decides to switch to a newly sensed MTAk 

only if it concludes that MTAr had been better tracked than the network wide average tracking history of 

all the MTAs in the system, and its MTAr’s CTI is more than that of MTAk by more than a threshold 

amount.   

   A key assumption for this tracking framework is that while sensing an MTA, an ARV is able to detect 

the identity of an MTA. This enables the ARVs to collaborate for deciding when and how to switch 

across different MTAs. Without this assumption the problem becomes more complex and that is a topic of 

our ongoing work.   

7.2 Implementation of Tracking on the SCAV Sensor Test-bed    

   The tracking algorithm was evaluated for varying number of MTAs and ARVs using up to five SCAV 

units and their point-to-point navigation services as described in Section 5. The MTAs are realized using 

a set of SCAVs, programmed to move along preset trajectories, and a different set of SCAVs were used as 

the ARVs within our 3m x 3m navigation test-bed. The periodic MTA sensing process by the ARVs, 

indicated in Figure 10, was emulated by programming each MTA to send a periodic wireless LOC beacon 

containing its location information. Since an ARV is aware of its own location, when it receives a LOC 

beacon from an MTA within a preset Tracking Range, a successful MTA sensing is assumed to be 

accomplished. Also, an ARV navigates toward the location information found in the most recently 

received LOC packet from a locked MTA. Due to this location based emulation, the sensing process had 

similar order of errors as found for the dynamic location errors in Figures 8 and 9. Different levels of 
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MTA sensing sensitivity were emulated by simply varying the preset Tracking Range. Controlled 

flooding was used for the D-table exchange (see Figure 10) through a 900MHz mobile ad hoc network 

formed by the ARVs. The ARVs periodically transmit SYNC beacons containing its local D-table 

information for the controlled flooding.    

   When a large number of moving SCAVS (more than 3) are placed within the 3m x 3m navigation test-

bed, frequent sensor collisions were observed. To mitigate such collisions, the following measures were 

implemented. 1) using an Infra Red based proximity detector for collision avoidance, 2) ensuring a 

minimum separation between all moving sensors, and 3) a networked “shadow tracking” to avoid 

collisions between multiple ARVs tracking a single MTA. Under such situations, only one ARV directly 

follows the MTA, and the other ARVs collaboratively choose moving “shadow” points of the MTA 

which are slightly away from the MTA itself. This prevents any undesirable convergence between the 

tracking ARVs, thus reducing the sensor collision possibilities. The shadow arbitration among multiple 

ARVs is accomplished based on the unique identifiers of each SCAV units. Also a speed differential has 

been introduced between the MTAs and the ARVs, so that a speeding ARV can always catch up with a 

locked MTA by getting closer to it.  

7.3 Tracking Performance 

   The graphs in Figure 11:a show scenarios involving one and two Autonomous Reconnaissance Vehicles 

tracking a Mobile Target Agent which is programmed to travel along the trajectory: 

(350,350)→(150,150)→(350,150)→(150,350)→(350,350)→(150,150)→(150,350)→(350,150)→(350,35

0). For each experiment, 160 LOC packets were sent out by the MTA at the rate of one packet every 2s. 

The Cumulative Tracking Index (CTI) was measured by counting the number of LOC packets received by 

an ARV while being within the tracking range of the MTA. All reported results represent an average from 

three separate tracking runs with the same initial conditions. The ARVs are initially placed such that they 

are within the sensing range of the MTAs.   

For the 1-MTA/1-ARV scenario, the tracking problem reduces to a simple leader-follower strategy 

without any need for MTA switching as introduced in the general algorithm in Figure 10. In the absence 

of MTA switching, the algorithm is always expected to provide the best CTI of 160. However, the results 

in Figure 11:a indicate that the measured CTI can be significantly smaller, especially for short tracking 
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ranges. This is because of the navigations errors, as shown in Figure 8 and 9, which occasionally force the 

ARV to erroneously drift out the tracking range of the MTA, especially when the range is small. With 

increased tracking range, since the navigation errors become smaller in a relative term, the CTI value 

improves, although it finally saturates at a value of 120, which is lower than the best case of 160. 
 

Fig. 11: Tracking performance: effects of a) tracking range, and b) consumed wireless bandwidth 
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   Introducing two ARVs can help improving the situation simply because when one ARV looses the 

MTA due to navigation error, it is likely that the other ARV is still locked to it. As shown in Figure 11:a, 

this collaboration effect improves the CTI for all tracking ranges, eventually achieving the near-best case 

performance of 157, for a tracking range of 200cm. Since two ARVs can simultaneously track one MTA, 

only one assumes the role of the primary tracker and the other remains as a shadow tracker as explained 

before. These roles however frequently alter when the primary tracker momentarily moves out of the 

tracking range due to navigation errors.   

   The effects of variable SYNC beacon frequencies are shown on Figure 11:b. Lower SYNC intervals 

correspond to higher D-table exchange frequency among the ARVs. With more frequent D-table 

exchanges, an ARV is expected to take better MTA switching decisions with fresh Di values received 

from the other ARVs. The results indicate that, although mild, this effect is there for smaller SYNC 

intervals (2s to 6s) and for larger tracking ranges. For smaller transmission ranges, however, the 

navigation errors offset the benefits of fresher Di values. This results generally indicate that better 

tracking performance can be obtained at the expense of higher network bandwidth in the form of frequent 
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D-table exchanges over the inter ARV ad hoc network.   
 

Fig. 12: Tracking performance with more MTAs than ARVs
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   Performance when the MTAs outnumber the ARVs is shown in Figure 12. The trajectory 

(350,350)→(150,350)→(150,150)→(350,150)→(350,350)→(150,150)→(350,150)→(150,350)→(350,35

0) is used by three MTAs with sufficient phase difference for avoiding excessive sensor collisions due to 

SCAV crowding. As shown in Figure 12:a, with increasing tracking range, the CTI values improve due to 

the same reasons as for the 1-MTA/1-ARV scenario in Figure 11:a. Also, as shown in Figure 12:b, With 

increasing tracking range, the coefficient of variation for CTI significantly reduces due to the fact that 

with larger tracking ranges the ARV is able to sense the MTAs more frequently. As a result, the ARV is 

able to perform MTA switching more effectively, thus reducing the variance of tracking time across the 

MTAs.  

  CTI per MTA and the corresponding coefficient of variation, when two ARVs tracking three MTAs, are 

also reported in Figure 12:a, b. It is evident that introducing a second ARV enables collaboration, and 

improves the CTI values. Also, the CTI variance across the MTAs is reduced by the fact that an MTA is 

now less likely to remain untracked.  

   As shown in Figure 13, we have experimented with different Switch_Threshod values (see the algorithm 

in Figure 10) in order to evaluate its effects on the MTA switching process. With higher threshold values, 

MTA switching is discouraged, as a result of which the coefficient of variation for CTI increases. 

Meaning, while few MTAs are well tracked, few others may remain untracked due to the lack of prompt 
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MTA switching. Although counterintuitive, our experiments showed that the CTI values also degrade 

with higher Switch_Threshod values. Close investigations revealed that the SCAV navigation errors (see 

Figures 8 and 9) are responsible for this effect in the following manner.  
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Fig. 13: Effects of varying switching thresholds  

   As seen in Figure 11, certain amount of loss of tracking happens even in 1-MTA/1-ARV scenario 

simply due to the navigation errors even in the absence of MTA switching. Similar effects are present 

here for a large Switch_Threshod, when very few MTA switching are happening. With more frequent 

switching, this loss of tracking gets compensated because an MTA now spends less time not being 

tracked, thus improving the CTI per ARV values. In the presence of ideal localization and navigation with 

no or very little error, we expect the CTI per ARV to in fact increase up to a point with higher 

Switch_Threshod values.       

   These target tracking results demonstrate that non-ideal localization and navigation conditions can 

cause theoretically sound algorithms to generate unexpected results, and therefore special experimental 

considerations will be necessary while implementing such mobile sensor systems under non-ideal 

conditions.  



To Appear, ACM/Springer Journal of Wireless Networks (WINET), 2009. 
 

27 

8. Summary and Future Work 

   We have presented the design, architecture, implementation experience, and experimental results from a 

networked mobile sensor test-bed developed for collaborative sensor applications. The test-bed comprises 

a fleet of networked mobile sensors, an indoor localization system for enabling sensor self-localization in 

GPS-denied environments, a control, debugging and management infrastructure, and a tiered wireless ad 

hoc network for seamless integration of the above three components and the existing wireless network 

infrastructure. A multi-target sensor tracking framework has been implemented on the mobile sensor test-

bed as a representative collaborative application. Joint networking and tracking mechanisms are 

developed for tracking multiple mobile targets using a team of networked mobile sensors.  

   In the first part of the paper, the architectural and implementation details about the software and 

hardware design of the developed mobile sensors and its various supported services are presented.   In the 

second part, first the problem of multi-target tracking using collaborative mobile agents has been 

introduced. Then a networked distributed tracking algorithm has been formally proposed. Finally, we 

report the experimental performance of the proposed tracking framework implemented in our mobile 

sensor test-bed. In addition to valuable implementation insights about the localization, navigation, 

Kalman filtering, and ad hoc networking processes, the experimental results lead us to the following 

conclusions about the overall system. First, localization and navigation errors, which are usually present 

in real-world scenarios, can significantly affect the tracking performance, even for a simple 1-leader/1-

follower scenario. Navigation errors are found to have more complex performance impacts in scenarios 

with multiple targets and tracking sensors. Second, there exists a tradeoff between the tracking 

performance and the consumed wireless bandwidth. It is found that in most scenarios, better tracking can 

be achieved at the expense of increased communication through the mobile ad hoc networks formed by 

the tracking sensors. Finally, the frequency at which a tracking sensor switches its target is an important 

design parameter in scenarios with higher number of targets than the tracking sensors. Careful tuning of 

target switching will be needed for striking a balance between acceptable overall tracking and the 

variance of tracking across individual targets.         

   Future work on this topic includes developing a number of sensor swarming algorithms for 

collaborating attack localization and search strategies using the baseline tracking mechanisms developed 
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in this paper. More simulations will be conducted to compare the different navigation and tracking 

algorithms with exiting ones. We are also experimenting with higher order Bayesian filters for improved 

navigation and tracking in the presence of higher localization errors.  
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